doeren.ml package
Provide tools for machine learning pipelines.
Submodules
doeren.ml.pipeline module
Classes for running machine learning pipelines.
- class doeren.ml.pipeline.PipelineRunner(*, data: Tuple[DataFrame | ndarray, DataFrame | ndarray, Series | ndarray, Series | ndarray], pipelines: Dict[str, Any])[source]
Bases:
BaseModelClass for optimizing and comparing machine learning pipelines.
- data
Union[pd.DataFrame, np.ndarray], Union[pd.DataFrame, np.ndarray], Union[pd.Series, np.ndarray], Union[pd.Series, np.ndarray]
- Type:
Tuple[
- ]
The data to use for training and validation. Expected to be a tuple of (X_train, X_valid, y_train, y_valid).
- pipelines
The pipelines to run.
- Type:
Dict[str, Any]
- property best_criterion: Dict[str, Any] | None
Return the best value for optimization criterion for each pipeline.
- property best_params: Dict[str, Any] | None
Return the best parameters for each pipeline.
- property best_pipeline: Dict[str, Any] | None
Return the model trained with the best set of hyperparameters for each pipeline.
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_post_init(context: Any, /) None
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that’s what pydantic-core passes when calling it.
- Parameters:
self – The BaseModel instance.
context – The context.
- property optimizer: Tuple[Callable | None, Dict[str, Any]]
Return the optimizer and optimizer related kwargs.
- set_optimizer(optimizer: Callable, kwargs=typing.Dict[str, typing.Any]) None[source]
Set the optimizer and optimizer related kwargs to use for hyperparameter tuning.
- Parameters:
optimizer (Tuple[Callable, Dict[str, Any]]) – A scikit-learn optimizer and optimizer related kwargs to use for hyperparameter tuning.